J80-188

Plasma Quench Investigations: Tungsten-Oxide Quenchants

30005 90011

J. M. Madson*

McDonnell Douglas Corp., St. Louis, Mo.

Abstract

THE negative-ion forming properties of high-temperature, gas-phase tungsten oxides in the free-jet expansion of an argon plasma have been investigated. Gas-phase tungsten-oxide vapors (mainly W_3O_9 for the temperature range of this experiment) are produced by sublimating WO_3 powder in a resistively heated oven. WO_3^- , $W_2O_6^-$ and $W_3O_9^-$ have been mass spectrometrically identified. Measurement of their ion signal intensity as a function of W_3O_9 flux from the oven indicates they are good electron attachers.

Contents

The negative-ion forming properties of tungsten oxides in a plasma were investigated in the McDonnell Douglas Research Laboratories Plasma Chemistry Facility. Figure 1 shows the experimental system for mixing the tungsten-oxide vapors with an argon plasma. An electrodeless rf induction argon plasma is supersonically expanded in a free jet where it mixes with the tungsten-oxide vapors generated from WO₃ powder in a tantalum oven. The centerline of the flow is sampled through an orifice in the extractor nozzle and analyzed with a quadrupole mass spectrometer, while the electron density in the expanding plasma is measured with a Ka-band microwave interferometer. The negative-ion data presented herein were obtained for a generator power of 54 kW and an argon mass flow of 1.53×10^{-1} g·s⁻¹. For the conditions of this experiment, the electron density at the location of the interferometer was about 1.8×10^{12} cm⁻³ with the density at the oven location approximately 4.8×10^{12} cm⁻³. The conditions behind the shock wave which forms in front of the oven are estimated to be¹: M = 1.65, T = 2360 K, p = 12 kPa (90 Torr), and the stream velocity $v = 1.33 \times 10^5$ cm·s⁻¹. During tungsten-oxide vapor generation, the oven is heated to a maximum of 1500 K; therefore, the shock temperature is dominant in determining the gas temperature in the vicinity of the oven.

Two oven configurations were used in these experiments. The first was a resistively heated oven used to generate tungsten-oxide vapor; the second an identical, unheated oven used for SF_6 injection. The tungsten-oxygen system forms a complex mixture of gaseous oxides containing $(WO_3)_n$, where n=1, 2, 3, and 4 together with W_3O_8 . Measurements ²⁻⁴ and equilibrium calculations ⁵ show that W_3O_9 is the major tungsten-oxide species above solid WO_2 or WO_3 in the temperature range of interest for these experiments (~1200-1500 K). Tungsten-oxide vapors are generated by sublimating WO_3 powder in a tantalum oven. The tungsten-oxide vapor flux emanating from the oven is a function of the vapor pressure of the oxide in the oven and the oven orifice

Presented as Paper 79-0253 at the AIAA 17th Aerospace Sciences Meeting, New Orleans, La., Jan. 15-17, 1979; submitted Jan. 27, 1979; synoptic received Dec. 10, 1979; revision received Feb. 11, 1980. Copyright © American Institute of Aeronautics and Astronautics, Inc., 1979. All rights reserved. Full paper available from AIAA Library 555 W. 57th Street, New York, N.Y. 10019. Price: Microfiche, \$3.00; hard copy, \$7.00. Remittance must accompany order.

Index categories: Thermochemistry and Chemical Kinetics; Atmospheric and Space Sciences.

diameter. The equilibrium vapor pressure of W3O9, W2O6 and W₄O₁₂ as a function of temperature for the W-WO, and the WO_3 - $W_{20}O_{58}$ systems has been determined experimentally by Battles.² The vapor pressure of the oxide species in the oven (predominately W₂O₉), and therefore the oven flux. depends on the composition of the solid sample in the oven. The original WO₃ powder in the oven was yellow; however, after repeated heating, the character of the sample remaining in the oven changed. Two residue samples were subjected to xray diffraction analysis; a bluish-purple residue was identified as W₁₈O₄₉ and a chocolate-brown residue as WO₂. In general, negative-ion measurements were made under conditions where it was reasonable to assume that the sample was either fresh WO₃ or had been heated sufficiently to assure reduction of WO₃ to WO₂. Under either of these conditions, the vapor pressure of the gaseous oxides at a given temperature was obtained from the appropriate vapor pressure-temperature relationship.²

Tungsten-oxide negative-ion species WO₃, W₂O₆, and W₃O₉ were detected and identified mass spectrometrically with WO; being the dominant negative ion found under the conditions of the experiments reported herein. Figure 2 shows four sets of measurements of WO₃ signal intensity as a function of W₃O₉ oven flux for the same plasma conditions. The data of curve 1 were obtained from a fresh charge of WO3. The W3O9 flux was obtained from the vapor pressure curve for W₃O₉ from the WO₃-W₂₀O₅₈ system. After seven heating and cooling cylces of the same sample during which the WO signal intensity was measured, the data of curve 2 were obtained. As a result of the repetitive heating and cooling, the solid residue in the oven was reduced to WO₂. Therefore, the data of curve 2 were plotted against W₃O₉ vapor pressure from the W-WO₂ system. A new oven was charged with fresh WO₃ powder and heated to 1400-1550 K in five separate heat-cool cycles for a total of 10 h to reduce the WO₃ to WO₂. The data shown in curves 3 and 4 were then obtained from the WO₂ sample in the oven. The slope of the initial portion of all four curves of Fig. 2 is nearly the same, indicating that the WO₃ was formed by the same process in each case. The most probable reaction, as previously suggested, 5 is

$$e + W_3O_9 \rightarrow WO_3 + W_2O_6$$
 (1)

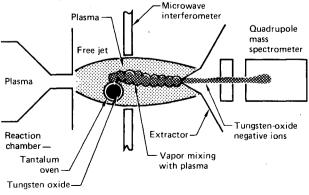


Fig. 1 Plasma/tungsten-oxide vapor mixing.

^{*}Scientist. Member AIAA.

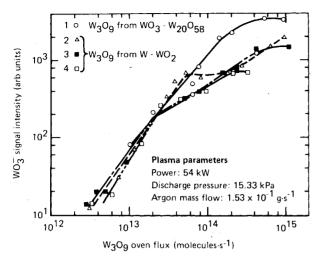


Fig. 2 WO₃ vs W₃O₉ oven flux.

For W_3O_9 flux greater than 2.5×10^{13} molecules·s⁻¹ ($T\sim1385$ K), the slope of curves 2, 3, and 4 changes, reflecting a change in the ion-formation mechanism. The W_3O_9 vapor in these three sets of measurements was obtained from solid WO_2 in the oven. The curve labeled 1, which does not change slope as the others do, was obtained from WO_3 . The vapor pressure data² show that for the W-WO₂ system, W_2O_6 vapor is present, whereas it is not present for the WO_3 - $W_{20}O_{58}$ system. Considering the W-WO₂ system at 1385 K (the point where the three curves of Fig. 2 change slope), the vapor pressure of W_2O_6 is comparable to that of W_3O_9 at about 1345 K ($\sim3.3\times10^{12}$ molecules·s⁻¹). Therefore, a competing process for the formation of WO_3 -is

$$e + W_2O_6 \rightarrow WO_3^- + WO_3$$
 (2)

Since W₂O₆ vapor is not present in the WO₃ system, the process described by reaction (2) would not occur, and thus, the slope of the data curve (curve 1 of Fig. 2) would not change.

The electron removal effectiveness of tungsten-oxide was compared with that of SF₆ by mixing SF₆ with the argon plasma through a modified tantalum oven. The plasma conditions were maintained the same as for the tungsten-oxide measurements except the oven was not resistively heated. With the plasma flowing around the oven, the oven temperature increased to 815 K. Figure 3 shows a set of data obtained using the SF₆ injection technique. At low SF₆ flux, SF_5^- and SF_6^- are the dominant negative ions. As the SF_6 flux increases, F- increases while SF- and SF- decrease. The electron attachment cross section for the formation of SF₆ is sharply peaked around zero electron energy and that for SF 5 peaks at a few tenths of an electron volt. As the SF₆ flux increases, SF₆ mixes with the argon plasma farther from the oven surface, and thus, reacts with electrons in the plasma having higher energies. In this region, the formation of F - is favored, and the intensity of SF₆ and SF₅ decreases. Comparison of the initial slope of WO₃ from W₃O₉ in Fig. 2 with

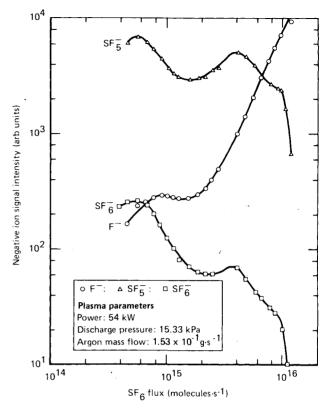


Fig. 3 Negative ions from SF₆ vs SF₆ flux.

that of F^- from SF_6 in Fig. 3 gives a measure of the quench effectiveness (electron removal) of W_3O_9 compared with that of SF_6 under the same conditions. This comparison indicates that on the basis of unit flux of the parent neutral, the production of WO_3^- from W_3O_9 is approximately 60% that of F^- from SF_6 .

Acknowledgments

This research was conducted under the McDonnell Douglas Independent Research and Development Program.

References

¹ Arave, R. J., "Thermodynamic and Normal Shock Properties of the Inert Gases in Ionization Equilibrium," Boeing Rept. No. D2-22291, 1963, pp. 10-34.

²Battles, J. E. "A Mass Spectrometric Investigation of Tungsten Dioxide and Tungsten Trioxide," Ph.D. Thesis, Ohio State Univ., 1964; *Dissertation Abstracts*, Vol. 25, 1965, p. 6509.

³ Ackermann, R. J. and Rauh, E. G., "A Thermodynamic Study of the Tungsten-Oxygen System at High Temperatures," *Journal of Physical Chemistry*, Vol. 67, 1963, pp. 2596-2601.

⁴Berkowitz, J., Chupka, W. A., and Inghram, M. A., "Polymetric Gaseous Species in the Sublimation of Tungsten Trioxide," Journal of Chemical Physics, Vol. 27, 1957, pp. 85-86.

⁵Zavitsanos, P. D., "Electron Attachment by Tungsten Oxides," SAMSO TR-72-307, May 1972, pp. 1-31.